Department of Chemistry Master Calendar

View Full Calendar

This calendar includes all events from the following individual calendars: Department of Chemistry Alumni Events (events for an alumni audience), Department Events (events of general interest and/or relevant to all Chemistry research areas), Diversity, Equity, and Inclusion Events, Public Events, and events related to Chemistry research areas and programs (Analytical Chemistry, Chemical Biology, Chemistry-Biology Interface Training Program, Inorganic Chemistry & Materials Chemistry, Organic Chemistry, Physical Chemistry), as well as Department of Chemical and Biomolecular Engineering Seminars & Events.

 

Prof. Roel Tempelaar, Northwestern University, "Steering Spin–valley Polarizations through Phonons and Photons"

Event Type
Seminar/Symposium
Sponsor
Prof. Nancy Makri
Location
Chemical & Life Sciences Lab, 601 S Goodwin Ave, B-102
Date
Jan 29, 2025   2:00 - 3:00 pm  
Contact
Randy Prince
E-Mail
rlprince@illinois.edu
Phone
217-333-2540
Views
3
Originating Calendar
Chemistry - Physical Chemistry Seminars

Control of spin and valley polarizations opens up opportunities for spintronic and quantum information applications. Monolayer transition-metal dichalcogenides (TMDs) offer an appealing platform to harness such polarizations. TMDs host excitons in valley-shaped regions of their band structure, featuring well-defined carrier spins and obeying chiral optical selection rules. However, the technological potential of excitons in TMDs is impeded by rapid spin–valley relaxation.

 

I will present our theoretical/computational efforts to address and enhance spin–valley polarizations in TMDs through strong coupling to photons. Recognizing that chiral light is a manifestation of photonic spin, I will show such strong coupling to allow for efficient spin transduction through the formation of "chiral polaritons". I will furthermore show how a breaking of chiral symmetry in optical cavities allows valley–spin relaxation to be suppressed in embedded TMDs.

 

I will also discuss our efforts to unravel how spin–valley relaxation in TMDs is driven by lattice phonons. Towards this goal, my group has advanced nonadiabatic methodologies that allow delocalized phonon modes and topological effects to be incorporated within a mixed quantum–classical framework. Results for TMDs indicate this approach to enable the modeling of solid-state phonon-driven processes at realistic dimensionalities.

link for robots only