College of Engineering Seminars & Speakers

Back to Listing

The Interaction between Gravity Currents and Breaking Internal Waves

Event Type
Mechanical Science and Engineering
Location Passcode: 340211
wifi event
Sep 14, 2021   4:00 pm  
Professor Jeffrey R. Koseff, Civil and Environmental Engineering, Stanford University
Amy Rumsey
Originating Calendar
MechSE Seminars

Gravity currents moving along the continental slope, such as cold river inflows into lakes or brine effluent from desalination plants, can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. I will present the results of laboratory experiments in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents.

From the experiments we have learned that the presence of a pycnocline causes a gravity current to split and intrude into the ambient at two distinct levels of neutral buoyancy, as opposed to the classical description of gravity currents in stratified media as being either a pure under or interflow. Additionally, we have also identified two different types of waves that form on the pycnocline in response to the intrusion of the gravity current. An underflow-dominated regime causes a pycnocline displacement where the speed of the wave crest is locked to the gravity current, whereas an interflow-dominated regime launches an internal wave that moves much faster than the gravity current head or interfacial intrusion.

We also completed a full set of experiments investigating the effects of the basin walls interacting with the initiated waves, and characterized the reflected waves and subsequent mixing efficiencies. From these longer time scale experiments we have identified two modes of motion initiated by the interaction. First, there is a low frequency surge of the lower layer caused by the gravity current, and also higher frequency internal waves that break when they encounter the topographic slope and quickly dissipate. The mixing efficiency of the reflected internal waves breaking on the topographic slope was quantified as an overall mixing efficiency (across all wave breaking events), and was found to be low compared to previous similar studies.


About the Speaker

Jeffrey Koseff is the William Alden and Martha Campbell Professor of Engineering in the Department of Civil and Environmental Engineering, and the Founding Perry L. McCarty Director of the Stanford Woods Institute for the Environment. Koseff's research in environmental fluid mechanics focuses on the interaction between physical and biological systems in natural aquatic environments. Activities include turbulence and internal wave dynamics in stratified flows, sea-grass canopy hydrodynamics, the interaction between gravity currents and breaking internal waves, and the transport of marine microplastics. Koseff joined the faculty of the Department of Civil and Environmental Engineering in 1984 and was promoted to full professor in 1996. He served as Director of the Environmental Fluid Mechanics Laboratory from 1991 to 1996, after a 6-year stint as Assoc. Dir. In 1995 Koseff was appointed as Chair of Civil and Environmental Engineering (CEE) and served in this capacity until September 1999, when he assumed the role of Senior Associate Dean of the School of Engineering until December, 2002. Between 1992 and 2003, as a member of Provost Committee for the Environment, Koseff and colleagues developed a number of interdisciplinary academic programs at Stanford including the Global Climate and Energy Program which funded research focused on developing advanced energy technologies with reduced greenhouse gas emissions. From 2004 until 2016, Koseff was appointed as the inaugural Director of Woods Institute. He is the recipient of the Knapp Award in Fluids Engineering from the American Society of Mechanical Engineering (ASME), as well as a number of teaching awards at Stanford, including the Stanford School of Engineering Tau Beta Pi Award for excellence in undergraduate teaching (1989), an ASSU Outstanding Teaching Award (1992), the Rhodes Award for Excellence in Undergraduate Teaching (1993), the Eugene L. Grant Award (1995 and 2011), and ASSU Teacher of the Year –Honorable Mention (2007). In 2015 Koseff was elected as a Fellow of the American Physical Society and he received the Richard W. Lyman Award from Stanford University. In 2017, Koseff received the inaugural Sustainability Award from Stanford for his contributions to increasing the sustainability of Stanford’s practices and facilities, and in 2018 he was named as the Borland Lecturer in Hydraulics by Colorado State University. In 2020 Koseff was elected as a Fellow of the California Academy of Sciences. Koseff has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, Cornell University, University of Michigan, and The WHOI-MIT Joint Program.

link for robots only