Department of Chemistry Master Calendar

View Full Calendar

This calendar includes all events from the following individual calendars: Department of Chemistry Alumni Events (events for an alumni audience), Department Events (events of general interest and/or relevant to all Chemistry research areas), Diversity, Equity, and Inclusion Events, Public Events, and events related to Chemistry research areas and programs (Analytical Chemistry, Chemical Biology, Chemistry-Biology Interface Training Program, Inorganic Chemistry & Materials Chemistry, Organic Chemistry, Physical Chemistry), as well as Department of Chemical and Biomolecular Engineering Seminars & Events.

 

CHBE 565 Seminar, Prof. Eun Ji Chung, University of Southern California, "Exploiting the Body's Barriers for Nanomedicine Targeting" (host: Prof. Guironnet)

Event Type
Seminar/Symposium
Sponsor
Chemical & Biomolecular Engineering and International Paper Company
Date
Apr 27, 2021   2:00 pm  
Contact
Christy Bowser
E-Mail
cbowser@illinois.edu
Phone
217-244-9214
Views
62
Originating Calendar
Chemical & Biomolecular Engineering - Seminars and Events

Natural, physiological processes in the body can act as barriers to effective nanoparticle delivery. In this seminar, I will discuss the unique advantages of small, organic micelles and their ability to harness such barriers for the detection and targeted delivery of therapeutics to diseases including cardiovascular and chronic kidney disease. For chronic kidney disease, while small molecule drugs have been proposed as a therapy to manage disease progression, repeated, high dosages are often required to achieve therapeutic efficacy, generating off-target side effects, some of which are lethal. To address these limitations, our lab has designed a kidney-targeting micelle (KM) platform toward drug delivery applications. Specifically, KMs were found to cross the glomerular filtration barrier and bind to specific surface markers present on renal tubule cells. In vivo, KMs were found to be biocompatible and showed higher accumulation in kidneys compared to nontargeted controls in vivo. We provide proof-of-concept studies for their utility in autosomal dominant polycystic kidney disease nanotherapy and their application using various routes of administration including oral and transdermal administration. We discuss the promise of nanomedicine, the tailored design necessary to match such promise, and their potential as next generation platforms for personalized medicine. Development of nanomicelles that can protect and deliver nucleic acid therapies to inhibit transformation into pathogenic cell types in cardiovascular disease will also be discussed.

link for robots only