View Full CalendarThis calendar includes all events from the following individual calendars: Department of Chemistry Alumni Events (events for an alumni audience), Department Events (events of general interest and/or relevant to all Chemistry research areas), Diversity, Equity, and Inclusion Events, Public Events, and events related to Chemistry research areas and programs (Analytical Chemistry, Chemical Biology, Chemistry-Biology Interface Training Program, Inorganic Chemistry & Materials Chemistry, Organic Chemistry, Physical Chemistry), as well as Department of Chemical and Biomolecular Engineering Seminars & Events.
CHBE 565 Seminar, Prof. Stephanie Lee, Stevens Institute of Technology, "Nanoconfining
Optoelectronic Crystals"
- Event Type
- Seminar/Symposium
- Sponsor
- Chemical & Biomolecular Engineering and International Paper Company
- Virtual
-
Join online
- Date
- Oct 13, 2020 2:00 pm
- Contact
- Christy Bowser
- E-Mail
- cbowser@illinois.edu
- Views
- 84
- Originating Calendar
- Chemical & Biomolecular Engineering - Seminars and Events
Solution-based processing of optoelectronic active layers promises to drive down the manufacturing costs of emerging technologies, such as light-weight, large-area solar panels. While significant effort has focused on the molecular tuning of soluble semiconductors to improve optical and electronic properties, their performance ultimately depends on the extent and manner of crystallization as solvent rapidly evaporates during film deposition. Confining crystallization to the sub-micron length scale during solution deposition presents a powerful strategy to select for preferred polymorphs, crystal orientations and sizes that promote efficient optoelectronic processes. In small-molecule organic semiconductor systems, we take advantage of crystal growth dynamics to preferentially orient crystals to align the fast charge transport direction with device current using porous scaffolds. In metal halide perovskite systems, we have found nanoconfinement to shift both the thermodynamics and kinetics of solid-state phase transitions. Recently, we have exploited the dramatically enhanced stability of nanoconfined MHPs to study fundamental optoelectronic properties these materials using temperature-dependent photoluminescence and low-frequency Raman spectroscopy.