Department of Chemistry Master Calendar

View Full Calendar

This calendar includes all events from the following individual calendars: Department of Chemistry Alumni Events (events for an alumni audience), Department Events (events of general interest and/or relevant to all Chemistry research areas), Diversity, Equity, and Inclusion Events, Public Events, and events related to Chemistry research areas and programs (Analytical Chemistry, Chemical Biology, Chemistry-Biology Interface Training Program, Inorganic Chemistry & Materials Chemistry, Organic Chemistry, Physical Chemistry), as well as Department of Chemical and Biomolecular Engineering Seminars & Events.

 

Professor Lea Nienhaus, Florida State University, "Generating Spin-Triplets at the Perovskite/Organic Interface"

Event Type
Seminar/Symposium
Sponsor
Professor Martin Gruebele, Physical Chemistry
Location
CLSL B102
Date
Sep 27, 2023   2:00 - 3:00 pm  
Contact
Randy Prince
E-Mail
rlprince@illinois.edu
Phone
217-333-2540
Views
58
Originating Calendar
Chemistry - Physical Chemistry Seminars

Triplet generation at a hybrid inorganic/organic semiconductor interface is a very promising approach to increase the (photo-)excited state recombination lifetime, and thus, facilitate solar energy harvesting. Possible applications using the generated spin-triplet excitons are photon upconversion and photocatalysis.

Photon upconversion describes the process of shortening the wavelength of the light emitted after irradiation, resulting in a net gain in photon energy. Here, upconversion occurs by combining multiple low energy photons to a single high energy photon through a process called triplet-triplet annihilation. Since direct optical excitation of triplet states is ‘spin-forbidden’, so-called sensitizers are required to indirectly populate the triplet state by energy or charge transfer.

Currently, triplet sensitizers span a broad range of material classes including metal-organic complexes, nanomaterials, and bulk perovskite films. Understanding the fundamental energy transfer mechanism is crucial for the advancement of optoelectronic devices based on this process. The exact triplet sensitization mechanism varies depending on several factors including: (i) the absolute alignments of the sensitizer and acceptor energy levels. (ii) The exciton binding energy in the sensitizer, resulting in excited states in form of excitons or free carriers. (iii) The local trap density, which can impact doping levels and band bending. Here, I will present the current understanding of triplet generation at the bulk perovskite/organic interface.  

link for robots only