College of LAS Events

View Full Calendar

If you will need disability-related accommodations in order to participate, please email the contact person for the event.
Early requests are strongly encouraged to allow sufficient time to meet your access needs.

Linguistics Seminar: Forrest Davis (MIT)

Event Type
Department of Linguistics
FLB 1080 Lucy Ellis Lounge
Feb 9, 2023   4:00 - 5:00 pm  
Forrest Davis, Postdoctoral Researcher (MIT)
Sofya Styrina
Originating Calendar
Linguistics Event Calendar

Please note that this talk will take place on Thursday.

Title: What neural models tell us about linguistic knowledge: insights from cross-linguistic investigations

Abstract: Is linguistic data enough to model human linguistic knowledge? In this talk, I will describe computational experiments that are designed to highlight how cross-linguistic variation provides unique insights into this question. I will draw on two key contributions of natural language processing: i) computational models which scale to large amounts of data, and ii) tests of linguistically naïve models on particular linguistic phenomena (e.g., subject-verb agreement) which probe aspects of linguistic knowledge. The field has uncovered considerable overlap between humans and neural models, suggesting that raw linguistic data can yield human-like linguistic knowledge. However, a direct link between model behavior and human linguistic knowledge is hindered by the fact that investigations are primarily based on studies of a single language – English. By drawing on findings from psycholinguistics, I will compare the performance of neural models and humans in two case studies: ambiguous relative clause attachment and implicit causality. While my results show that models trained and tested on English succeed in capturing human behavior, those trained and tested on Spanish (ambiguous relative clause attachment) or Italian (implicit causality) crucially fall short. I will argue that discrepancies between humans and neural models serve not only to advance the development of computational models beyond English, but also, reveal crucial cases where linguistic data is not enough for human linguistic knowledge, moving us closer to grasping the fundamental human capacity for language.

link for robots only