NCSA staff who would like to submit an item for the calendar can email newsdesk@ncsa.illinois.edu.
Is what I tell myself. There was a time when I thought I may have discovered it, others did too. Around 2012 several groups including ours found evidence of these quantum excitations in electrical circuits containing nanowires of semiconductor covered by a superconductor. The dramatic signatures were peaks in conductance that appeared under conditions expected from theory for Majorana modes, which are their own anti-modes and may possess non-Abelian properties. But a few years later, similar features in the data were identified due to an interesting, but a more mundane effect - which we call trivial states such as Andreev bound states. Over time more and more data pointed at the trivial and not at the exotic explanation. But because Majorana claims kept coming, this led to some digging and even retractions.
What we learned after 10 years is that we have a much better handle on what effects show up in these nanowires, which positions us well for the ultimate Majorana discovery which we should be able to tell apart from all the non-Majorana things we saw. The second lesson we learned is that materials quality of device constituents, superconductors and semiconductors, as well as how samples are fabricated - are the make-or-break factors for making this happen. So while I cannot report an exciting physics discovery, I can walk you through the scientific process that took place, a 10-year event of independent value which taught me how to do science better.