Department of Mathematics Calendar

Back to Listing

The Department of Mathematics Calendar has moved to Webtools. Anyone may submit an event by clicking the "+" button (upper right). Note: the Sponsor field is required. Just type "n/a"

All events will be reviewed before acceptance. Please email Shelby Koehne if you have any questions about submitting an event.

Note: you may search past and future events by clicking on the magnifying glass icon on the main Calendar page.

For an archive of past events:

Turing bifurcation in systems with conservation laws

Event Type
147 Altgeld Hall
Apr 8, 2022   1:00 pm  
Aric Wheeler (Indiana University)
Ryan McConnell

Abstract: Generalizing results of Matthews-Cox/Sukhtayev for a model reaction-diffusion equation, we derive and rigorously justify weakly nonlinear amplitude equations governing general Turing bifurcation in the presence of conservation laws. In the nonconvective, reaction-diffusion case, this is seen similarly as in Matthews-Cox, Sukhtayev to be a real Ginsburg-Landau equation weakly coupled with a diffusion equation in a large-scale mean-mode vector comprising variables associated with conservation laws. In the general, convective case, by contrast, the amplitude equations consist of a complex Ginsburg-Landau equation weakly coupled with a singular convection-diffusion equation featuring rapidly-propagating modes with speed $\sim 1/\eps$ where $\eps$ measures amplitude of the wave as a disturbance from a background steady state. Applications are to biological morphogenesis, in particular vasculogenesis, as described by the Murray-Oster and other mechanochemical/hydrodynamical models. This work is joint with Kevin Zumbrun.

link for robots only