Abstract: One of the first major topics we learn about in algebraic topology is the classification of locally constant sheaves of sets (i.e. covering spaces) of a sufficiently nice topological space in terms of its fundamental group. This classification is mediated by an equivalence of categories known as the monodromy equivalence. An insight of Kan was that, in order to classify locally constant sheaves of more interesting objects, one must pass from fundamental groups to fundamental infinity-groupoid. In this expository talk, I'd like to talk about work of Barwick-Glasman-Haine pushing this circle ideas further into the realm of stratified spaces. The main result is the exodromy equivalence, which classifies constructible sheaves on a stratified space in terms of its profinite stratified shape.