Events - Department of Mathematics

Back to Listing

The Department of Mathematics is a bustling place full of new ideas. We host several events that occur throughout the year, including seminars, colloquium, conferences, and social events. Our seminars and colloquium are open to the public: all students, faculty, or alumni who are interested are welcome to join us for exciting talks on the leading edge of mathematics research!

For information about adding events to this calendar, please see this user guide

Graph Theory and Combinatorics Seminar: Two conjectures on the spread of graphs

Event Type
wifi event
Jan 25, 2022   1:00 pm  
Michael Tait (Villanova University)
Sean English

Given a graph G let lambda_1 and lambda_n be the maximum and minimum eigenvalues of its adjacency matrix and define the spread of G to be lambda_1 - lambda_n. In this talk we discuss solutions to a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs.

The first, referred to as the spread conjecture, states that over all graphs on $n$ vertices the join of a clique of order floor(2n/3) and an independent set of order ceiling(n/3) is the unique graph with maximum spread. The second, referred to as the bipartite spread conjecture, says that for any fixed e <= n^2/4, if G has maximum spread over all n-vertex graphs with e edges, then G must be bipartite.

We show that the spread conjecture is true for all sufficiently large n, and we prove an asymptotic version of the bipartite spread conjecture. Furthermore, we exhibit an infinite family of counterexamples to the bipartite spread conjecture which shows that our asymptotic solution is tight up to a multiplicative factor in the error term. This is joint work with Jane Breen, Alex Riasanovsky, and John Urschel.

Please email Sean English ( for Zoom link.

link for robots only