IQUIST Master Calendar

Back to Listing

Hassel and Marianne Ledbetter MatSE Colloquium - "Sustainable Metals"

Event Type
Seminar/Symposium
Sponsor
Materials Science and Engineering Department
Date
Nov 14, 2022   4:00 pm  
Speaker
Dierk Raabe, Max-Planck-Institiut fur Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Sustainable Synthesis of Materials, Duesseldorf, Germany
Views
48
Originating Calendar
MatSE Colloquium Calendar

"Sustainable Metals"

The presentation is about the sustainability of metallic alloys, specifically steels and aluminum alloys. Only metallic materials encompass such diverse features as strength, hardness, workability, damage tolerance and joinability, often combined with functional properties such as corrosion resistance, thermal and electric conductivity, and magnetism. Today we produce and consume about 2 billion tons of metals every year, with steels alone standing for an annual production of currently 1.85 billion tons. The huge and accelerating demand for load-bearing and functional metallic alloys in key sectors such as green energy supply, infrastructures, health, durable construction, robotics, passenger safety and modern transportation is resulting in predicted production growth rates of up to 200% until 2050. Most of these materials, specifically steel, aluminum, nickel, and titanium, require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. This means that the huge success of metallic products and industries also brings them into a position where they have an essential role in addressing environmental aspects. The vast availability of metals, efficient mass producibility, low price and amenability to large-scale industrial production (from extraction to the alloy) and manufacturing (downstream operations after solidification) have become a substantial environmental burden: worldwide production of metals leads to a total consumption of about 8% of the global energy used and 35% of all industrial CO2-equivalent emissions when counting only steels and aluminum alloys. This lecture presents several aspects related to this field, with a focus on methods for improving the sustainability of steels, in areas including reduced-carbon-dioxide primary production, recycling and scrap-compatible alloy design. The lecture also discusses the effectiveness and technological readiness of individual measures and also shows how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability, and better mechanical properties than currently available alloys.

Please contact the MatSE Department for Link at Matse@illinois.edu

link for robots only