Grainger CEME Seminars

Back to Listing

Design of an Ac-dc System with Partial Power Being Processed on Active Rectifiers

Event Type
Grainger CEME
4070 ECEB
Apr 2, 2018   1:00 - 1:50 pm  
Phuc Huynh




High efficiency and high power density are critical in megawatt-class mechanical-to-electrical energy conversion systems that operate within a limited speed range, as in wind- and gas-turbine-driven generators. Generator output is connected to an ac-to-dc conversion system for processing and controlling power flow to an electric grid. Conventional high-power ac-to-dc conversion architectures rely heavily on active rectifiers, which consist of fully-controlled power-electronic switches, making the system bulky, lossy, and less reliable. An alternative approach is proposed: integrating a multi-port permanent-magnet synchronous generator (PMSG) with series-stacked rectifiers. An active rectifier processes only partial converted power while regulating the dc bus. The remaining power is processed by diode bridges, which allows a substantial increase in overall efficiency, power density, and reliability. Theoretical analysis shows that for wind power generation applications, the active rectifier processes a maximum of 15% the total power while the PMSG operates in a speed range similar to the conventional doubly-fed induction machine. This presentation covers the system-level design of the proposed architecture and presents the testbed implementation.

link for robots only