Grainger College of Engineering, All Events

View Full Calendar

From kinematic to energetic control of wearable robots for agile human locomotion

Event Type
Seminar/Symposium
Sponsor
Mechanical Science and Engineering
Location
4100 Sidney Lu Mechanical Engineering Building
Date
Apr 5, 2022   4:00 pm  
Speaker
Professor Robert Gregg, Electrical Engineering and Computer Science, University of Michigan
Contact
Amy Rumsey
E-Mail
rumsey@illinois.edu
Phone
217-300-4310
Views
158
Originating Calendar
MechSE Seminars

Abstract

Even with the help of modern prosthetic and orthotic devices, individuals with lower-limb amputation, neurological disorders, or orthopedic disorders often struggle to walk in the home and community. Emerging powered prosthetic and orthotic devices could actively assist patients to enable greater mobility, but these devices are currently designed to produce a small set of pre-defined motions. Finite state machines are typically used to switch controllers between discrete phases of the gait cycle, e.g., heel contact vs. toe contact, and between different tasks, e.g., uphill vs. downhill. However, this discrete methodology cannot continuously synchronize the robot’s motion to the timing or activity of the human user. This talk will first present a continuous parameterization of human joint patterns based on 1) a phase variable that robustly represents the timing of the human gait cycle, and 2) task variables representing ground slope and walking speed. To fully leverage this control approach, this talk will introduce a quasi-direct drive approach to actuating prosthetic legs for accurate control of joint torque and impedance, enabling more dynamic motions, reducing power consumption, and reducing acoustic noise compared to state-of-art robotic prostheses. While these methods reproduce missing joint function, a different control philosophy is needed for exoskeletons that assist existing joint function. The last part of this talk will introduce an energetic control paradigm for backdrivable exoskeletons to alter the human body’s dynamics without prescribing joint kinematics, e.g., reducing the perceived weight and inertia of the limbs. This control approach is implemented on exoskeletons with quasi-direct drive actuators, which provide the necessary backdrivability to facilitate volitional human control.

About the Speaker

Robert D. Gregg IV received the B.S. degree in electrical engineering and computer sciences from the University of California, Berkeley in 2006 and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Illinois at Urbana-Champaign in 2007 and 2010, respectively. He joined the University of Michigan as an Associate Professor in the Department of Electrical Engineering and Computer Science and the Robotics Institute in Fall 2019, and he became the Associate Director of Robotics in Fall 2020. Prior to joining U-M, he was an Assistant Professor in the Departments of Bioengineering and Mechanical Engineering at the University of Texas at Dallas. Dr. Gregg directs the Locomotor Control Systems Laboratory, which conducts research on the control mechanisms of bipedal locomotion with applications to wearable and autonomous robots. He is a recipient of the Eugene McDermott Endowed Professorship, NSF CAREER Award, NIH Director’s New Innovator Award, and Burroughs Wellcome Fund Career Award at the Scientific Interface. Dr. Gregg is a Senior Member of the IEEE.

https://web.eecs.umich.edu/locolab/

 

 

Host:  Professor Joao Ramos

link for robots only