In 1982 Blanford and Payne predicted that magnetic fields are fundamental for accretion onto supermassive black holes (SMBHs). Magnetic field lines anchored in the disk accelerate a wind via the centrifugal force, allowing for the angular momentum to be transferred out of the system and gas to accrete onto the central compact object. The wind can form a few Schwarzschild radii from the SMBH up to the nuclear torus. Almost a half century later, the detailed mechanisms of SMBH growth are still a passionate area of research. Astronomers currently debate whether winds are fuelled by jets, mechanical winds, or radiation, with magnetic processes being the least accepted explanation.
In this talk, I present detailed ALMA observations of the most compact and opaque galactic nuclei in the universe, appropriately named compact obscure nuclei (CONs). CONs represent a significant phase of galactic nuclear growth, with opaque and compact centers (r <100 pc), that conceal growing SMBHs. The analysis of these observations reveal magnetically driven molecular winds and abundances of complex organic molecules rivaling SGR b2 and Galactic hot cores. These results imply that growth of SMBHs is very similar to the growth of hot cores or protostars.