College of LAS: For Faculty & Staff

View Full Calendar

If you will need disability-related accommodations in order to participate, please email the contact person for the event.
Early requests are strongly encouraged to allow sufficient time to meet your access needs.

Prof. Tobias Brixner, Universität Würzburg, "Space–Time-Resolved Sppectroscopy of Multi-Particle Interactions"

Event Type
Seminar/Symposium
Sponsor
Prof. Stephan Link
Location
CLSL B-102
Date
Oct 28, 2024   2:00 - 3:00 pm  
Contact
Randy Prince
E-Mail
rlprince@illinois.edu
Phone
217-333-2540
Views
56
Originating Calendar
Chemistry - Physical Chemistry Seminars

The single-particle approximation is ubiquitous: The total wave function is approximated as a product, leading to a separation of variables. Despite immense success, there are important phenomena in which multi-particle correlations are relevant. We develop techniques that can resolve such interactions. Combining coherent two-dimensional electronic spectroscopy (2DES) and fluorescence microscopy, we determine the exciton–phonon coupling strength of a 2D dichalcogenide at room temperature [1]. We also observe a new type of quasiparticle arising from the strong trifold coupling of excitons, phonons, and photons in a microcavity [2]. Taking fluorescence detection to the limit, we implement ultrafast single-molecule spectroscopy including spectral resolution [3]. For a spatial resolution of down to 3 nm, we combine 2DES with photoemission electron microscopy (PEEM). This allows us to determine the coupling between plasmons and electrons in a metallic nanoslit resonator by observing a plasmon–polariton quantum wave packet [4]. Lastly, we develop a general method to separate experimentally the nonlinear response terms of perturbation theory [5]. This solves the decades-old “annihilation problem” of femtosecond spectroscopy and provides access to multi-particle interactions in a systematic manner with applications for molecules, supramolecular aggregates, polymers, interfaces, plasmonic and hybrid nanosystems.

[1] D. Li et al., Nature Commun. 12, 954 (2021).
[2] D. Li et al., Phys. Rev. Lett. 128, 087401 (2022).
[3] D. Fersch et al., J. Phys. Chem. Lett. 14, 4923 (2023).
[4] S. Pres et al., Nature Phys. 19, 656 (2023).
[5] P. Malý et al., Nature 616, 280 (2023).

link for robots only