Department of Chemistry Master Calendar

View Full Calendar

This calendar includes all events from the following individual calendars: Department of Chemistry Alumni Events (events for an alumni audience), Department Events (events of general interest and/or relevant to all Chemistry research areas), Diversity, Equity, and Inclusion Events, Public Events, and events related to Chemistry research areas and programs (Analytical Chemistry, Chemical Biology, Chemistry-Biology Interface Training Program, Inorganic Chemistry & Materials Chemistry, Organic Chemistry, Physical Chemistry), as well as Department of Chemical and Biomolecular Engineering Seminars & Events.

 

CHBE 565 Seminar, Prof. Jodie Lutkenhaus, Texas A&M University, Polyelectrolyte Assemblies: Fundamentals and Applications"

Event Type
Seminar/Symposium
Sponsor
Chemical and Biomolecular Engineering and International Paper Co.
Location
116 Roger Adams Laboratory
Date
Apr 18, 2019   2:00 pm  
Contact
Christy Bowser
E-Mail
cbowser@illinois.edu
Views
71
Originating Calendar
Chemical & Biomolecular Engineering - Seminars and Events

Charged assemblies bearing opposite or complementary charges span natural (proteins, enzymes, DNA) to synthetic materials (surfactants, synthetic polyelectrolytes). Assembly is facilitated by electrostatic attraction and entropic release of counterions, and most often occurs in aqueous media. Notably decades ago, Michaels described synthetic polyelectrolyte complexes as brittle when dry but “leathery or rubberlike” when wet, which points to the strong effect of water on the mobility of a charged assembly. Here, the molecular origin of the glass transition is quantified for several charged macromolecular systems is investigated using calorimetry and molecular modeling as a function of water content. A general relationship is revealed as it holds for two completely different types of charged systems (pH- and salt-sensitive) and for both polyelectrolyte complexes and polyelectrolyte multilayers, which are made by different paths. This suggests that water facilitates the relaxation of charged assemblies by reducing attractions between oppositely charged intrinsic ion pairs. We further demonstrate the dual role of water and temperature in the dynamics of polyelectrolyte complexes by showing time-temperature and time-water superpositioning in a single polyelectrolyte complex system for the first time. With regard to applications, charged polymers can assemble with functional nanomaterials such as reduced graphene oxide or MXene sheets. These 2D nanomaterials are conductive, facilitating their application as sensors or electrodes for energy storage. Here, the nature of polyelectrolyte-2D nanomaterial assemblies is investigated as thin films. A reversibly stretchable MXene/polyelectrolyte strain sensor and humidity sensor is demonstrated, and the origin of this response is discussed. Also, mechanically robust graphene-based electrodes are presented as assemblies with nanoscale Kevlar®.

link for robots only