If you will need disability-related accommodations in order to participate, please email the contact person for the event.Early requests are strongly encouraged to allow sufficient time to meet your access needs.
The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has demonstrated clinical efficacy in the treatment of advanced cancers, with anti-CD19 CAR-T cells achieving up to 90% complete remission among patients with relapsed B-cell malignancies. However, challenges such as antigen escape and immunosuppression limit the long-term efficacy of adoptive T-cell therapy. Here, I will discuss the development of and clinical data on next-generation T cells that can target multiple cancer antigens and resist antigen escape. I will also present recent work on tuning CAR signaling activities via rational protein design to achieve greater in vivo anti-tumor efficacy. This presentation will highlight the potential of synthetic biology in generating novel mammalian cell systems with multifunctional outputs for therapeutic applications.