Physics - Medium and High Energy Seminar

Back to Listing

ME/HE Seminar: "Strong Dynamics and the Emergence of Mass"

Event Type
276 Loomis
Sep 11, 2017   1:00 pm  
Craig Roberts, Argonne National Laboratory
Becky McDuffee

Abstract: The existence of our Universe depends critically on the following empirical facts: the proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism; and it is absolutely stable, despite being a composite object constituted from three valence quarks; but, on the other hand, the pion is unnaturally light, possessing a lepton-like mass, even though it is constituted from the same degrees-of-freedom that produce the proton. These qualities are fundamental emergent phenomena, having their foundation in confinement and dynamical chiral symmetry breaking, the understanding of which is crucial if science is to reveal our origins, and could potentially be central to learning how to complete the picture of Nature by moving beyond the Standard Model. Confinement and dynamical chiral symmetry breaking will only be fully understood when we have a solution to QCD. In the meantime, their manifold observable implications are being signalled in a variety of continuum and lattice studies. This presentation will explain their connection with the existence of a unique running charge in QCD, running masses for the gluons and quarks, and the empirical expression of these features in, e.g. hadron distribution functions and amplitudes, with predictions that can be validated at an EIC.

link for robots only