Computer Science Department Master Calendar

Back to Listing

Distinguished Lecture Series - Peter Kogge, University of Notre Dame

Event Type
Department of Computer Science
1404 Siebel Center
Mar 28, 2011   4:00 pm  
Originating Calendar
Computer Science Distinguished Lectureship Series

The Technical Challenges of Extreme Scale Computing

Abstract: DARPA recently funded a 2 year study of the technical challenges  of trying to go from today’s petascale computing to exascale (1018 operations/sec) 1000X  in roughly half the time it took to get from terascale to petascale. Such challenges, if solved, would enhance our ability to build systems that operate across the extremes of computing
from world-class supercomputers running highly numeric applications to embedded processors (including space-borne avionics) with orders of magnitude more capability for real-time image and sensor processing.

This talk will summarize the original Exascale study, with a particular focus on the most far-reaching of the challenges, namely energy utilization. This will be amplified by two subsequent application-specific studies on where energy is consumed in such systems: Linpack on the "clean sheet of paper" supercomputer architecture developed in the Exascale study, and an onboard Mars rover class rock finding algorithm on future tiled architectures similar to what is being investigated today at JPL. The results are consistent but perhaps unexpected. We have probably crossed a threshold where the real energy and power problems of the future are in the memory and interconnect  not the processing logic.

Brief Bio: (see for more)

Dr. Peter Kogge currently holds the Ted McCourtney Chair of Computer Engineering at the University of Notre Dame, with research interests in highly scalable computer architectures and nano-technologies. Prior to that he was an IBM Fellow with IBM's Federal System where among other projects he oversaw the development of arguably the first parallel
computer to fly in space on the Shuttle, and the world’s first multi-core chip in 1993  on a DRAM process. He is the author of 2 books, including the first on the now ubiquitous technique of pipelining, and holds over 30 patents. Applications of his PhD research led to what is now called the Kogge-Stone adder, the fastest known adder constructed out of fixed fanout gates. He was also the chairman of the DARPA working group that developed the Exascale report.

link for robots only